This comprehensive course guides students through the complete data analytics workflow using Python, combining programming fundamentals with advanced statistical analysis. The curriculum is structured across five interconnected modules that build upon each other, using real-world datasets to provide practical, hands-on experience.



Python for Data Analytics
Dieser Kurs ist Teil von DeepLearning.AI Data Analytics (berufsbezogenes Zertifikat)

Dozent: Sean Barnes
4.322 bereits angemeldet
Empfohlene Erfahrung
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
April 2025
20 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihr Fachwissen im Bereich Data Analysis
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat von DeepLearning.AI zur Vorlage


Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

In diesem Kurs gibt es 5 Module
This module is an introduction to Python programming, designed for beginners with no prior coding experience. You will explore the fundamental concepts and practices that underpin programming languages, with a specific focus on their application in data manipulation and analysis.
Das ist alles enthalten
24 Videos9 Lektüren4 Aufgaben1 Programmieraufgabe3 Unbewertete Labore
This module introduces essential data analysis techniques using Python and the pandas library. You will learn how to import and work with data efficiently, leveraging DataFrames and Series to manipulate, filter, and analyze datasets. The module covers fundamental concepts such as vectorization for performance optimization, distinguishing between attributes and methods, and performing descriptive statistics. Additionally, you will explore data visualization techniques and segmentation methods to extract meaningful insights from structured data.
Das ist alles enthalten
19 Videos8 Lektüren4 Aufgaben1 Programmieraufgabe4 Unbewertete Labore
This module focuses on data visualization using Python, covering essential tools and techniques for creating effective visuals. You will learn to generate visualizations directly from pandas DataFrames and Series, as well as use popular libraries like matplotlib and Seaborn to develop custom plots. The module explores various visualization types, from basic line graphs and bar charts to advanced distribution and categorical plots. Additionally, you will learn how to enhance readability through styling, annotations, and design choices to highlight trends, patterns, and anomalies in data.
Das ist alles enthalten
18 Videos3 Lektüren4 Aufgaben1 Programmieraufgabe4 Unbewertete Labore
This module introduces statistical inference and regression modeling using Python. You will learn to construct confidence intervals, perform hypothesis testing with t-tests, and simulate data using NumPy. The module covers both simple and multiple linear regression, guiding you through model development, interpretation of key metrics (such as R-squared, p-values, and coefficients), and prediction of new data points. Additionally, you will explore methods to encode categorical variables, evaluate model performance using error metrics, and refine regression models with the help of Large Language Models (LLMs).
Das ist alles enthalten
20 Videos5 Lektüren4 Aufgaben1 Programmieraufgabe4 Unbewertete Labore
This module explores working with time series data in Python, focusing on DateTime objects, indexing, and visualization. You will learn to manipulate time-based data, apply descriptive statistics, and segment time series by key date features. The module covers resampling and reshaping techniques, as well as using simple and multiple linear regression to model trends and seasonality. Additionally, you will evaluate forecasting models using appropriate error metrics to assess their performance.
Das ist alles enthalten
14 Videos4 Lektüren4 Aufgaben2 Programmieraufgaben5 Unbewertete Labore
Dozent

Empfohlen, wenn Sie sich für Data Analysis interessieren
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,